Propulsion

Affordable, efficient, and innovative propulsion systems are an essential factor for growing the space economy and enabling exploration. Exploiting new designs, fuels, materials, and manufacturing technologies will allow for novel mission architectures, spacecraft concepts, and system level improvements. Papers are solicited that relate to all aspects of propulsion systems, including component and system-level design, material development/selection, manufacturing, testing, ballistic prediction methodologies, performance evaluation, and state-of-the-art technology advancements.

Additional areas of interest include overviews of historical propulsion systems, lessons learned from development, testing and flight experience, and current status of upcoming systems/programs.

Topics of interest include, but are not limited to:

- Boost and Upper Stage Propulsion
- Combustion
- Cryogenic Fuel Storage and Management
- Electric Propulsion
- Entry, Descent, and Landing
- Experiment and Test Facilities
- Field Effects Research
- Freight Transportation
- Green Propellants
- Hypersonic Flight
- Liquid, Solid and Hybrid Propulsion
- Magnetic and Pulsating Fields
- Nuclear Propulsion
- On-orbit Propulsion
- Propellant Depots and Storage
- Propulsion Architectures
- Reusable vs Expendable Launch
- Space Planes and SSTO
- Subsystems
- Theoretical Analysis

For questions, email:

Stan Borowski
NASA Glenn Research Center (retired)

CONTRIBUTORS

- Jon Black
 Virginia Tech
- Stan Borowski
 NASA Glenn (retired)
- Jason Cassibry
 University of Alabama Huntsville
- Claude Joyner
 Aerojet Rocketdyne
- Valerie Lyons
 AIAA Green Engineering Technical Committee
- Peter Montgomery
 NASA Kennedy Space Center
- Brian Pomeroy
 Sierra Nevada Corp.
- Mitchell Walker
 Georgia Tech

DEADLINE FOR SUBMISSION: 8pm ET 31 March 2020

ascend.events/cfc